
Developer’s Guide

Revised June 27, 2013

950 Boardwalk, Suite 205, San Marcos, CA 92078 • (760) 510-1200 • www.productivecomputing.com

© Copyright 2013 Productive Computing, Inc.

http://www.productivecomputing.com
http://www.productivecomputing.com

Table of Contents

I. INTRODUCTION ..! 3

II. INTEGRATION STEPS..! 4
...1) Installing the Plug-in 4

...2) Registering the Plug-in 5
..3) Changing Printers 6

...4) Get Valid Printer Names 7
...5) Automatic Printing 8

..6) Automatic Printer Selection Without Printing 9
..7) Optional Printing Parameters or Attributes 10

..8) Get or Set System Printer 11

III. ERROR HANDLING ...! 12

IV. CONTACT US ...! 13

Developer’s Guide – Change Printer Page 2 of 13

I. Introduction

Description

The Change Printer plug-in is a simple tool designed to aid in the task of printing records in a FileMaker® Pro

database. The plug-in allows for the FileMaker user to design scripts that will dynamically change printing from

one printer to another allowing you to set a series of printing attributes. The plug-in also has tools that can

identify all printers currently available to a given user and ways to get and set the operating system default

printer. These operations are accomplished using FileMaker function calls from within FileMaker calculations.

These calculations are generally determined from within FileMaker “SetField” or “If” script steps.

Product Version History:

http://www.productivecomputing.com/change-printer/version_history

Intended Audience

FileMaker developers or persons who have knowledge of FileMaker scripting, calculations and relationships as

proper use of the plug-in requires that FileMaker integration scripts be created in your FileMaker solution.

Successful Integration Practices:

1) Read the Developer’s Guide

2) Read the Functions Guide

3) Reverse engineer our FileMaker demo file and review video tutorials

Demo and video tutorials: http://www.productivecomputing.com/change-printer

4) Familiarize yourself with printing in FileMaker Pro

Developer’s Guide – Change Printer Page 3 of 13

http://www.productivecomputing.com/change-printer/version_history
http://www.productivecomputing.com/change-printer/version_history
http://www.productivecomputing.com/change-printer
http://www.productivecomputing.com/change-printer

II. Integration Steps

Accessing and using the plug-in involve the following steps.

1) Installing the Plug-in

FileMaker 12:

1) Open the FileMaker demo file available in the plug-in bundle (www.productivecomputing.com).

 2) Select the “Install” button.

To manually install the plug-in into the FileMaker Extensions folder, follow the steps below.

1) Quit FileMaker Pro completely.

2) Locate the plug-in in your download which will be located in a folder called “Plug-in”. On Windows the
plug-in will have a “.fmx” extension. On Mac the plug-in will have a “.fmplugin” extension.

3) Copy the actual plug-in and paste it to the Extensions folder which is inside the FileMaker program
folder.
• On Windows this is normally located here: C:\Program Files\FileMaker\FileMaker X\Extensions
• On Mac this is normally located here: Volume/Applications/FileMaker X/Extensions (Volume is the

name of the mounted volume)

4) Start FileMaker Pro. Confirm that the plug-in has been successfully installed by navigating to
“Preferences” in FileMaker, then select the “Plug-ins” tab. There you should see the plug-in listed with a
corresponding check box. This indicates that you have successfully installed the plug-in.

• On Mac, ensure that access for assistive devices is enabled as shown below. This can be found by
navigating to “System Preferences,” then “Universal Access.”

Developer’s Guide – Change Printer Page 4 of 13

http://www.productivecomputing.com
http://www.productivecomputing.com

2) Registering the Plug-in

The next step is to register the plug-in which enables all plug-in functions.

1) Confirm that you have access to the internet and open our FileMaker demo file, which can be found in
the “FileMaker Demo File” folder in your original download.

2) If you are registering the plug-in in Demo mode, then simply click the “Register” button and do not
change any of the fields. Your plug-in should now be running in “DEMO” mode. The mode is always
noted on the Setup tab of the FileMaker demo.

3) If you are registering a licensed copy, then simply enter your license number in the “LicenseID” field
and select the “Register” button. Ensure you have removed the Demo License ID and enter your
registration information exactly as it appears in your confirmation email. Your plug-in should now be
running in “LIVE” mode. The mode is always noted on the Setup tab of the FileMaker demo.

Congratulations! You have now successfully installed and registered the plug-in!

Why do I need to Register?

In an effort to reduce software piracy, Productive Computing, Inc. has implemented a registration process for all

plug-ins. The registration process sends information over the internet to a server managed by Productive

Computing, Inc. The server uses this information to confirm that there is a valid license available and identifies

the machine. If there is a license available, then the plug-receives an acknowledgment from the server and

installs a certificate on the machine. This certificate never expires. If the certificate is ever moved, modified or

deleted, then the client will be required to register again. On Windows this certificate is in the form of a ".pci”

file. On Mac this certificate is in the form of a “.plist” file.

How do I hard code the registration process?

You can hard code the registration process inside a simple “Plug-in Checker” script. The “Plug-in Checker” script

should be called at the beginning of any script using a plug-in function and uses the PCCP_Register,

PCCP_GetOperatingMode and PCCP_Version functions. This eliminates the need to manually register each

machine and ensures that the plug-in is installed and properly registered. Below are the basic steps to create a

“Plug-in Checker” script.

If [PCCP_Version("short") = "" or PCCP_Version("short") = "?"]
Show Custom Dialog [Title: "Warning"; Message: "Plug-in not installed."; Buttons: “OK”]
If [PCCP_GetOperatingMode ≠ “LIVE”]
Set Field [Main::gRegResult; PCCP_Register(“licensing.productivecomputing.com” ; “80” ; “/PCIReg/pcireg.php” ;
“your license ID”)
If [Main::gRegResult ≠ 0]
Show Custom Dialog [Title: "Registration Error"; Message: “Plug-in Registration Failed”; Buttons: “OK”]

Developer’s Guide – Change Printer Page 5 of 13

3) Changing Printers

The PCCP_ChangePrinter(PrinterName ; optShowDlg ; optPause ; optCopies ; optSource ; optOrientation ;

optPageSize ; optRecordSet) function is used to change the name of the printer in FileMaker to which the print

job is sent and set optional attributes. The function has eight parameters. The first parameter "PrinterName" is

the name of the desired printer. The second parameter "optShowDlg" tells the plug-in to either initiate the print

job automatically, or allow the user to initiate the print job. The third parameter "optPause" allows the print

dialog to be displayed for the desired number of milliseconds. The fourth parameter "optCopies" determines the

number of copies the job will print. The fifth parameter "optSource" determines which source tray the paper will

come from on the printer. The sixth parameter "optOrientation" determines the orientation of the page that

prints and is only applicable on a Windows machine as on a Mac you can use the FileMaker "Print Setup" script

step to select the orientation. The seventh parameter "optPagesize" determines what size paper the printer

should print with. The eighth parameter "optRecordSet" determines whether the print job will be printing the

records being browsed or the currently opened record. All parameters are explained in further details in the

"Functions Guide.”

The plug-in requires that the print dialog be initially displayed, as when called by the Print[] script step. The

plug-in will “Grab” the print dialog and make the requested changes. If the “optShowDlg” parameter is set to

“1”, the plug-in will allow the user to initiate the print job by clicking “OK”. If the “optShowDlg” parameter is set

to “0”, the plug-in will “click” OK for the user, thus initiating the print job itself.

The PCCP_ChangePrinter function is used in conjunction with FileMaker’s Print[] script step. Immediately after

calling the PCCP_ChangePrinter function a subsequent call to FileMaker’s Print[] script step should be called.

Before calling the PCCP_ChangePrinter function it is recommended that you obtain a list of all printers available.

The PCCP_GetPrinterAt(index) function returns the name of a printer located in the systems internal list of

printers. The value returned by the function is valid to use with the PCCP_ChangePrinter function.

The easiest way to describe how to use these functions to change printers and get valid printer names is to

show some example scripts for different scenarios.

In the example scripts below these assumptions are made:

- A layout named ‘Printable Layout’ exists in the FileMaker solution

- There is a table named ‘Main’ with a global variable named ‘gResult’

- There is a table named ‘Printers’ with a field named ‘Names’

- One of the names returned by PCCP_GetPrinterAt is “\\Brother on DC1”

Developer’s Guide – Change Printer Page 6 of 13

4) Get Valid Printer Names

The first step with any scenario is to decide to which printer you wish to print. The valid names of available

printers can be retrieved with the PCCP_GetPrinterAt(index) function. This function is used to determine the

exact name of a printer as it will be used in the PCCP_ChangePrinter function. To demonstrate using the

function the following example script iterates through all of the printers on the local machine and grabs the

appropriate name. Each name is stored in its own record in a “Printers” table.

###

Go To Layout[Printers]

Show All Records

Delete All Records[No Dialog]

Set Field[Printers::Counter ; 1]

Loop

 New Record

 Set Field[Printers::Name ; PCCP_GetPrinterAt(Printers::Counter)]

 Exit Loop If [Left(Name ; 9) = “!!ERROR!!”] //there are no more printers

 Set Field[Printers::Counter ; Printers::Counter + 1]

End Loop

#remove the last record as it does not hold a printer name

Delete Record[No Dialog]

###

Each record in the Printers table now holds a valid name for a printer. Any of these names can be used in the

PCCP_ChangePrinter function call.

Developer’s Guide – Change Printer Page 7 of 13

5) Automatic Printing

You have the option of printing automatically without requiring user interaction to press “OK” in the print dialog

screen. This is accomplished by omitting the second parameter in the ChangePrinter function or by passing

“False” or 0 as the second parameter. This can be written one of the following four ways:

a. PCCP_ChangePrinter(“\\Brother on DC1”)

b. PCCP_ChangePrinter(“\\Brother on DC1” ; “”)

c. PCCP_ChangePrinter(“\\Brother on DC1” ; “False”)

d. PCCP_ChangePrinter(“\\Brother on DC1” ; “0”).

Please note that although the function “presses” the print button before quitting, the user will

briefly see the print dialog displayed by FileMaker.

In the following example script below the first step navigates to the proper layout. The next step then sets the

desired printer. Then we finally print the document. The plug-in will dismiss the print dialog as soon as the

printer has been properly changed and automatically print the document o the desired printer without user

interaction.

###

Got To Layout[“Printable Layout” (Main)]

Set Field[Main::gResult ; PCCP_ChangePrinter(“\\Brother on DC1”)]

Print[]

Go To Layout[original layout]

###

Developer’s Guide – Change Printer Page 8 of 13

6) Automatic Printer Selection Without Printing

You also have the option of selecting the printer without printing. This will require user interaction to press “OK”

in the print dialog screen. This is accomplished by passing “True” or 1 as the second parameter in the

ChangePrinter function. This is written the following way: PCCP_ChangePrinter(“\\Brother on DC1” ; “True”) or

PCCP_ChangePrinter(“\\Brother on DC1” ; “1”). The function quits after setting the printer name.

This proves desirable when your want to select the printer for the end user, but want the end user to actually

select “OK” to send the print job to the printer. In the following example script we add a second

parameter to the PCCP_ChangePrinter function which tells the plug-in to only select the proper

printer but does not dismiss the dialog. This lets the end user make any other adjustments to the job

before sending it to the printer.

###

Got To Layout[“Printable Layout” (Main)]

#pass a boolean ‘true’ value (True or 1) in the second parameter

This leaves the Print dialog on the monitor

SetField[Main::gResult ; PCCP_ChangePrinter(“\\Brother on DC1” ; 1)]

Print[]

Go To Layout[original layout]

###

Developer’s Guide – Change Printer Page 9 of 13

7) Optional Printing Parameters or Attributes

You also have the option of setting optional parameters giving you more flexibility over the various printing

attributes. The PCCP_ChangePrinter(PrinterName ; optShowDlg ; optPause ; optCopies ; optSource ;

optOrientation) function now offers parameters to add a pause into the print job, select the number of copies

to print, select the source paper tray and determine the orientation of the page. Let’s briefly explore these

parameters and for a complete detailed explanation see the “Functions Guide.”

optPause sets the desired number of milliseconds to pause the print dialog before the print job proceeds.

optCopies determines the number of copies the job will print.

optSource determines which source tray the paper will come from on the printer.

optOrientation determines the orientation of the page that prints and is only applicable on a Windows

machine as on a Mac you can use the FileMaker "PrintSetup" script step to select the orientation.

optPageSize determines the page size to format the print page to.

optRecordSet determines the set of records to print, such as all records in the found set or just the current

record.

For example:

PCCP_ChangePrinter(“\\Brother on DC1” ; 0 ; 1000 ; 3 ; "Tray 1" ; 0) or

PCCP_ChangePrinter(“\\Brother on DC1” ; 1 ; “” ; 5 ; "Tray 2" ; 1)

When setting up the scripting to handle the changing of printers, it may be efficient to omit or leave certain

parameters blank. By "blanking" a parameter, the plug-in will use the settings as defined by the Print[] script

step. For example, if the Print[] script step is defined to use the page size "A4" and the page source "Tray 1",

then the Change Printer function call could be written as such:

Set Field [someTable::someField ; PCCP_ChangePrinter($printerName ; $showDlg ; $pauseTime ;

$numCopies ; "" ; $orientation ; "")]

In this case, the script would define the values for the printer name, the option to show the print dialog and

how long to pause and display the dialog, the number of copies, and the orientation of the page, but default to

Print[]'s definitions of "Tray 1" for the page source and "A4" for the page size.

Additionally, parameters can be omitted to achieve the same effect. Using the above example, if $orientation is

also desired to be set to the Print[] default, the function call can be written as such:

Set Field[someTable::someField ; PCCP_ChangePrinter($printerName ; $showDlg ; $pauseTime ; $numCopies)

Note that parameters can be omitted only from the end of the parameter list; if a parameter is to be omitted

Developer’s Guide – Change Printer Page 10 of 13

that has another parameter after it (i.e. omitting optSource and defining optPageSize), the following parameter

must be omitted, or the first parameter must be defined as "".

Please see the “Functions Guide” under the PCCP_ChangePrinter function for further examples and clarification.

8) Get or Set System Printer

You also have the option of getting or selecting the default system printer. This is accomplished using either the

PCCP_GetSystemPrinter or PCCP_SetSystemPrinter functions.

We recommend reading the “Functions Guide” in order to realize the full potential of the plug-in functions. If

there is missing functionality that you would like to have in the plug-in, please feel free to e-mail a request to

support@productivecomputing.com.

Developer’s Guide – Change Printer Page 11 of 13

mailto:support@productivecomputing.co
mailto:support@productivecomputing.co

III. Error Handling

When something unexpected happens, a plug-in function will return a result of !!ERROR!!. This makes it simple

to check for errors. If a plug-in function returns !!ERROR!!, then immediately after call

PCCP_GetLastError(Type) function for a detailed description of what the exact error was.

We find that most developers run into issues due to a lack of error trapping. Please ensure that you properly

trap for errors in your solutions. Here are a few samples of how you can check for errors.

Set Variable [$result = MyPluginFunction(“a” ; “b” ; “c”)]

If [$result = !!ERROR!!]

Show Custom Dialog [“An error occurred: “ & PCCP_GetLastError]

End If

The PCCP_GetLastError(format) function gives you the option to display the error description or error number.

Displaying the error number is more user friendly in international environments, where an English error

description may not be desired. If the format parameter is set to “Number” such as PCCP_GetLastError

(“Number”), then an error number will be returned. If format parameter is empty such as PCCP_GetLastError

or PCCP_GetLastError(“”), then an English error description will be returned.

Please find a list of return codes and descriptions below for your reference.

Error Number Error Text
-1 Plug-in not registered or session expired
-3 Invalid # of Parameters
-4 Invalid Parameter value(s)
-10 Failed Registration

-5000 Specified printer not found
-5001 Index out of bounds
-5002 Unable to get system printer
-5003 Still waiting for last call to finish
-5004 No printers listed
-5005 Unable to set system printer

Developer’s Guide – Change Printer Page 12 of 13

IV. Contact Us

Successful integration of a FileMaker plug-in requires the creation of integration scripts within your FileMaker

solution. A working knowledge of FileMaker Pro, especially in the areas of scripting and calculations is

necessary. If you need additional support for scripting, customization or setup (excluding registration) after

reviewing the videos, documentation, FileMaker demo and sample scripts, then please contact us via the

avenues listed below.

	
	 Phone: 760-510-1200
	 Email: support@productivecomputing.com
	 Forum: www.productivecomputing.com/forum

Please note assisting you with implementing this plug-in (excluding registration) is billable at our standard

hourly rate. We bill on a time and materials basis billing only for the time in minutes it takes to assist you. We

will be happy to create your integration scripts for you and can provide you with a free estimate if you fill out a

Request For Quote (RFQ) at www.productivecomputing.com/rfq. We are ready to assist and look forward to

hearing from you!

Developer’s Guide – Change Printer Page 13 of 13

mailto:support@productivecomputing.com
mailto:support@productivecomputing.com
http://www.productivecomputing.com/forum
http://www.productivecomputing.com/forum
http://www.productivecomputing.com/rfq
http://www.productivecomputing.com/rfq

